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1 Introduction

This research is directed towards the implementation of a comprehensive

deductive-algorithmic environment (toolkit) for the development and verifi-

cation of high assurance reactive systems, especially concurrent, real-time,

and hybrid systems. For this, we have designed and implemented the STeP

(Stanford Temporal Prover) verification system.

Reactive systems have an ongoing interaction with their environment,

and their computations are infinite sequences of states. A large number

of systems can be seen as reactive systems, including hardware, concurrent

programs, network protocols, and embedded systems. Temporal logic pro-

vides a convenient language for expressing properties of reactive systems. A

temporal verification methodology provides procedures for proving that a

given system satisfies a given temporal property.
The research covered necessary theoretical foundations as well as imple-

mentation and application issues. We summarize the theoretical results ill

Section 2, and then describe, in more detail, the implementation and tools

that we developed in Section 3.

Reactive, Real-time and Hybrid Systems

We say that a system is infinite-state if its computations can reach infinitely

many distinct states. Such systems contain variables that range over un-
bounded domains. Most software can be classified as infinite-state, since

data structures such as integers, lists and trees are best thought of as un-

bounded. Hardware systems, on the other hand, are finite-state, since they

can be in only finitely many distinct states; the state depends only on a fixed

number of bits. Note that computations of finite-state systems are still in-

finite sequences of states--it is the number of such distinct states that is

finite. While model checking tools can often automatically verify properties

of finite-state systems, deductive tools allow verifying infinite-state systems

as well, with some user interaction.

Another class of systems to be verified is introduced by parameterization.

A parameterized system has an arbitrary number of replicated components;

for instance, nodes in a network protocol, or processors and buses in a

multiprocessor architecture. Deductive formalisms provide a natural way of

verifying the general correctness of parameterized systems, for an arbitrary

number of processes.

More dimensions of infinity are introduced when considering real-time

systems, where time advances continuously and the time elapsed between

3
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Figure 1: Scope of STeP

events can be measured. A further extension is given by hybrid systems,

where continuous variables evolve over time as determined by differential

equations.

The various systems STeP can verify differ in their time model--discrete,

real-time, or hybrid--as well as in the domain of their state variables, which

can be finite or infinite. Furthermore, systems can be parametsrized in the

number of processes that compose them (N-process systems). All of these

systems can be modeled, however, using the same underlying computational

model: (fair) transition systems IMP95]. This basic model is extended in

appropriate ways to allow for modular structures, hardware-specific compo-

nents, clocks, or continuous variables. Figure 1 describes the scope of STEP,

classified along these three main dimensions.



2 Theoretical Foundations

2.1 System Representation: Transition Systems

The basic system representation in STeP uses a set of transitions. Each tran-

sition is a relation over unprimed and primed system variables, expressing

the values of the system variables at the current and next state. Transitions

can thus be represented as general first-order formulas, though more spe-

cialized notations for guarded commands and assignments is also available.

In the discrete case, transitions can be labeled as just or compassionate;

such fairness constraints are relevant to the proof of progress properties (see

IMP95]).

SPL Programs: For convenience, discrete systems can be described in the

Simple Programming Language (SPL) of [MP95]. SPL programs are auto-

matically translated into the corresponding fair transition systems, which

are then used as the basis for verification.

Real-Time Systems: STeP can verify properties of real-time systems, us-

ing the computational model of clocked transition systems [MP96]. Clocked

transition systems consist of standard instantaneous transitions that call re-

set auxiliary clocks, and a progress condition that limits the time that the

system can stay ill a particular discrete state. Clocked transition systems are

converted into discrete transition systems by including a tick transition that

advances time, constrained by the progress condition. The tick transition is

parameterized by a positive real-valued duration of the time step.

Hybrid Systems: Hybrid transition systems generalize clocked transition

systems, by allowing real-valued variables other than clocks to vary contin-

uously over time. The evolution of continuous variables is described by a

set of constraints, which can be in the form of sets of differential equations

or differential inclusions. Similar to clocked transition systems, hybrid tran-

sition systems are converted into discrete transition systems by including a

tick transition, parameterized by the duration of the time step. However,

for hybrid systems the tick transition must not only update the values of

the clocks, which is straightforward, but nmst also determine the value of

the continuous variables at the end of the time step. The updated value of

the continuous variables is represented symbolically; axioms and invariants,

generated based on the constraints, are used to determine the actual value

or the range of values at the time they are needed.

Other formalisms such as timed transition systems, timed automata and

hybrid automata can be easily translated into hybrid and clocked transition



systems [MP96].

Modularity: Complex systems are built from smaller components. Most

modern programming languages and hardware description languages there-

fore provide the concept of modularity. STeP includes facilities for modular

specification and verification [FMS98], based on modular transition systems,
which can concisely describe complex transition systems. Each module has

an interface that determines the observability of module variables and tran-

sitions. The interface may also include an environment assumption, a rela-

tion over primed and unprimed interface variables that limits the possible

environments the module can be placed in. The module can only be com-

posed with other modules that satisfy the environment assumption. Com-
munication between a module and its environment can be asynchronous,

through shared variables, and synchronous, through synchronization of la-

beled transitions.

More complex modules can be constructed from simpler ones by pos-

sibly recursive module expressions, allowing the description of hierarchical

systems of unbounded depth. Module expressions can refer to modules de-

fined earlier, or instances of parameterized modules, enabling the reuse of

code and of properties proven about these modules. Besides the usual hid-

ing and renaming operations, the language provides a construct to augment
the interface with new variables that provide a summary value of multiple

variables within the module. Symmetrically, a restriction operation allows

the module environment to combine or rearrange the variables it presents

to the module.

Real-time and hybrid systems can also be described as modular systems;

discrete, real-time and hybrid modules may be combined into one system.

The evolution constraints of hybrid modules may refer to continuous vari-

ables of other modules, thus enabling the decomposition of systems into

smaller modules. To enable proofs of nontrivial properties over such mod-

ules, we allow arbitrary constraints on these external continuous variables

in the environment assumption.

2.2 Property Specification: Temporal Logic

We use linear-time temporal logic (LTL) as our property specification lan-

guage. Formulas of LTL describe sets of infinite sequences of states. We

say that a system S satisfies a temporal property _o, written S _ _o, if every

computation of S satisfies _o.

The temporal logic is defined relative to an assertion language, which is

used to characterize sets of states. For this, we use the full expressive power



of first-orderlogic, includingboth interpretedfunctionsymbolsand pred-
icates. This logic is supportedby the correspondingautomateddeductive
(theorem-proving)tools.

Thesystemmodelsof clockedandhybrid transitionsystems(seeabove)
do not requireany extensionto the property specificationlanguage;the
globalclockisa systemvariablethat canbedirectlyreferencedin temporal
specifications.Theassertionlanguagecandescribeconstraintson theclocks
and, in the caseof hybrid systems,othercontinuousvariables.

2.3 Deductive Verification

The deductivemethodsof STePverify temporalpropertiesof systemsby
meansof verificationrulesandverificationdiagrams.Verification rules re-

duce temporal properties of systems to first-order verification conditions

[MP951. Verification diagrams [MP94] provide a visual language for guid-

ing, organizing, and displaying proofs, and automatically generating the

appropriate verification conditions as well (see Section 3.3).

Since clocked and hybrid transition systems are converted into fair tram

sition systems, verification rules and diagrams are uniformly applicable to

discrete, real-time and hybrid systems. However, due to the parameteriza-

tion of tile tick transition, the resulting verification conditions for real-time

and hybrid systems are usually more complex than those for (unparameter-

ized) discrete systems.

2.4 Deductive-Algorithmic Verification

Algorithmic methods such as model checking can automatically verify tem-

poral properties of reactive systems, but are restricted to finite-state systems

(or very specialized classes of infinite-state ones). We have developed a mml-

ber of formalisms that combine deductive methods and algorithmic methods

to verify, more automatically, general infinite-state systems, and extending

the expressiveness of model checking tools.

2.4.1 Deductive Model Checking

Deductive model checking [SUM99] allows the interactive model checking

of infinite-state systems. Standard explicit-state model checking searches

the product of system's state-space and the tableau (automaton) for the

negation of the temporal property being verified, in the search for a coun-

terexample computation. Deductive model checking transforms a diagram

that abstracts this product, called a falsification diagram, starting with a



generalskeletonof theproductgraphandrefiningit until a counterexample
is found,or the impossibilityof sucha counterexampleis demonstrated.

The deductivemodelchecking(DMC) procedurestartswith an initial
falsificationdiagramthat embedsall modelsof the negationof the property.
Transformationsarethenapplied,producinga sequenceof falsificationdia-
grams.Eachtransformationpreservesthe computationsof the systemthat
areembeddedin the diagram,guaranteeingthat eachfalsificationdiagram
includesall systemcomputationsthat violatethe property. If weobtain a
diagramthat doesnot embedany computation,then the systemsatisfies
theproperty.

In thegeneralinfinite-statecase,thedeductivemodelcheckingprocedure
will be interactive,and is not guaranteedto terminate. In the finite-state
case,it canbeusedasa decisionprocedurefor establishingtemporalprop-
erties,asdonebystandardmodelchecking.However,the entirestate-space
doesnot alwayshaveto beexploredin this case.

2.4.2 Generalized Verification Diagrams

Verification Diagrams provide a graphical representation of a deductive

proof, summarizing the necessary verification conditions, and are therefore
easier to construct and understand. Generalized Verification Diagrams ex-

tend them to be applicable to arbitrary temporal properties, replacing the

well-formedness check on the diagram by a finite-state model checking step.

They are a complete proof method for general (state-quantified) temporal

formulas, relative to the reasoning required to establish verification condi-

tions.

The diagrams of [BMS95] use Street acceptance conditions. In [MBSU98,

Sip98], we present an alternative description of generalized verification di-

agrams based on Miiller acceptance conditions, which are less concise but
more intuitive to the user.

The thesis [Sip98] presents diagram-based formalisms to verify temporal

properties of reactive system. Generalized verification diagrams represent

the temporal structure of the program as relevant to the property they prove.

The deductive component of a verification diagram defines a set of first-order

verification conditions that, when proven valid, show that all behaviors of

the system are embedded in the diagram. The algorithmic component is

an automata-theoretic language inclusion check that determines whether all

behaviors of the diagram satisfy the property.
We show how these methods can be used to verify not only discrete sys-

tems, but real-time and hybrid systems as well. We also present two special-



izedclassesof diagramsfor thesesystems:nonzenoness diagrams represent

a proof that a real-time or hybrid system is time-divergent, that is, all be-

haviors of the system can be extended into behaviors in which time grows

beyond any bound. Receptiveness diagrams prove a related property of real-

time and hybrid modules that implies time divergence and is preserved by

parallel composition.

2.4.3 Abstraction

In [CU98], we present an algorithm that uses decision procedures to generate
finite-state abstractions of possibly infinite-state systems. The algorithm

compositionally abstracts the transitions of the system, relative to a given,

fixed set of assertions. Thus, the number of validity checks is proportional

to the size of the system description, rather than the size of the abstract

state-space. The generated abstractions are weakly preserving for VCTL*

temporal properties, including LTL.

The thesis [Uri98] presents an abstraction-based framework for verifying

temporal properties of reactive systems, to allow more automatic verifica-

tion of general infinite-state systems and the verification of larger finite-

state ones. Underlying these deductive-algorittmlic methods is the theory

of property-preserving assertion-based abstractions, where a finite-state ab-

straction of tile system is deductively justified and algorithinically model

checked.

3 Implementation: STeP

The Stanford Temporal Prover (STEP) is a tool for tile computer-aided for-

real verification of reactive systems, including real-time and hybrid systems,

based on their temporal specification. STeP integrates model checking and
deductive methods to allow the verification of a broad class of systems,

including parameterized (N-component) circuit designs, parameterized (N-

process) programs, and programs with infinite data domains.

Figure 2 presents an outline of the STeP system. Tile main inputs are

a reactive system and a property to be proven for it, expressed as a tem-

poral logic formula. The system can be a hardware or software description,

and include real-time and hybrid components. Verification is performed by

model checking or deductive means or a combination of the two.
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Figure 2: An outline of the STeP system

3.1 User Interface

STeP 2.0 has a graphical user interface implemented in Java. The deductive

verification and theorem-proving components of STeP are implemented in

Standard ML of New Jersey, while the model checking tools are implemented

in C, for added efficiency. The ML component of STeP can also access

external OBDD libraries implemented in C.

STeP provides a comprehensive, integrated environment to prove tempo-

ral properties over reactive systems. The STeP Session Editor, presented in

Figure 3, keeps track of the main properties of interest throughout the verifi-

cation session, including axioms, assumptions, previously proven properties,

and automatically generated invariants, as well as the module to which each

applies. Thus, it can handle multiple systems and proofs simultaneously.

Properties can be activated or deactivated to control the extent of their use

in automatic theorem-proving.

Figure 4 shows the STeP Proof Editor, which is used to apply the basic

deductive temporal verification rules as well ms the Gentzen-style interactive
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theorem proving rules. In a typical deductive verification effort, the top-level

goal is a temporal formula to be proven valid for a given system. Verification

rules or diagrams are used to generate verification conditions, as subgoals,

which together imply the system validity of the original temporal property.

These subgoals are then established automatically using decision procedures

(Section 3.6) or interactively using the Gentzen-style rules. Model checking

is also initiated by the Proof Editor.

3.2 Model Checking

STeP features automatic explicit-state and symbolic model checking for

linear-time temporal logic. The explicit-state model checker performs an

incremental (depth-first) search of the state-space, directed by the tempo-

ral tableau (automaton) for the negated specification. Thus, only those

states that can potentially violate the specification are visited. This enables

the use of the explicit-state model checker on some infinite-state systems,

though it is not guaranteed to terminate for these systems. The symbolic

model checker uses a breadth-first search through sets of states represented

11



Figure4: STePProofEditor

by orderedbinary decisiondiagrams(OBDDs).Thus,it is limitedto finite-
statesystems,whosevariablesrangeovera fixed,finite numberof values.

Whentransitionscanbeexpressedasguardedcommands(i.e.,the sys-
tem isa setof deterministicactions),symbolicmodelcheckingisoptimized
usingtechniquesfor computingpredecessorstateswithout computingthe
entiretransitionrelation.A specializedbackwardssearchfor provinginvari-
ants is alsoavailable.The set of statesvisited in the backwardssearchis
constrainedby auxiliary invariants,whichmay havebeenformulatedand
verifiedbefore,or generatedautomatically.

The symbolicandexplicit-statemodelcheckerscomplementeachother.
Althoughlimitedto finite-statesystems,thesymboiicmodelcheckercanbe
considerablymoreefficient,particularly whenthe state-spaceis largeand
the transitionrelationand fixedpoints areamenableto representationby
OBDD's. On theotherhand,the explicit-statemodelcheckerisoftenfaster
onsystemswith relativelyfewreachablestates.

3.3 Generalized Verification Diagrams

Generalized verification diagrams [BMS95, A4BSU98] are an extension of

12
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Figure 5: STeP Diagram Editor

verification diagrams that allow the verification of arbitrary temporal prop-

erties. Diagrams can be seen as intermediaries between the system and

the property to be proven. A set of verification conditions is proved, de-

ductively, to show that the diagram faithfully represents computations of

the system. An algorithmic check then establishes that the diagram corre-

sponds to the formula being proved. Together, these two stages show that

all computations of the system are models of the temporal property.

The STeP Diagram Editor, shown in Figure 5, allows the user to draw a

diagram and then prove, using the Proof Editor, the associated verification

conditions. In STeP 2.0, the Diagram Editor and the Proof Editor are more

tightly coupled, to facilitate the incremental development of diagrams. The
user can draw an initial version and try to prove the associated verification

13



conditions.If they fail, theusercanmakelocalcorrectionsto the diagram
(ordiscoversomethingwrongwith thesystem)andattempt theproofagain.

The verificationconditionsare local to the diagram; failed verification

conditions point to missing edges or nodes, weak assertions, or possible bugs

in the system. Since local changes to a diagram do not affect the verification

conditions elsewhere, much of the work from the previous iteration can be

saved. Using feedback from the Proof Editor, the Diagram Editor can high-

light proved and unproved edges and nodes in the diagram, helping the user

correct the diagram. A change to the diagram automatically invalidates the

verification conditions in the Proof Editor that are affected by the change.

3.4 Constructing Finite-State Abstractions

Temporal properties can be proved for a complex system by finding a simpler

abstract system such that if the abstract system satisfies a related property,

then the original concrete system satisfies the original one as well. If the

abstract system is finite-state, its temporal properties can be established

automatically using a model checker. We have developed methods for auto-

matically generating finite-state abstractions of possibly infinite-state sys-

tems, using the decision procedures in STeP [CU98, Uri98]. We describe

some of these decision procedures in Section 3.6.

The abstraction algorithm compositionally abstracts the transitions of

the system, expressed as first-order relations, relative to a given, fixed set

of assertions which define the abstract state-space. The number of validity

checks is proportional to the size of the system description, rather than the

size of the abstract state-space.

Once the finite-state abstraction is generated, it can be model checked,

explicitly or symbolically. The generated abstractions are weakly preserving

for universal (VCTL*) temporal properties, including LTL. This means that

validity at the abstract level implies the validity of the original property over

the concrete system; however, if the abstract property fails, the original

property might still hold. In this case, we say that the abstraction was

not fine enough. An abstract counterexample can be used, manually, to

determine if a corresponding concrete counterexample exists, or else to build
a finer abstraction.

3.5 Automatic Invariant Generation

Deductive verification is usually an incremental process: simple properties

of the system being verified are proved first and then used to help establish

14



morecomplexones.STePimplementstechniquesfor the automatic genera-

tion of invariants, as described in [BBM97]. Invariant generation is based

on approximate propagation, starting from the set of initial states, through

the state-space of the system until a fixpoint is reached. Depending on the

approximation method used, different types of invariants can be generated:

• Local invariants result from analyzing the possible values of individual

variables, as well as the relation between control locations and data

values.

• Linear invariants express linear relationships between system vari-

ables.

• Polyhedral invariants generalize linear invariants, expressing polyhe-

dral constraints over sets of system variables.

For real-time and hybrid systems STeP provides an alternative technique

of invariant generation, also based on forward propagation of system behav-

ior through the state space, but now starting from the entire state space

[BMSU98]. In this case every propagation step leads to an invariant; no

fixpoint needs to be computed. For hybrid systems these techniques have

been further optimized to take advantage of the structure of the constraints,

resulting in stronger invariants. In [MS98] we show an example where the

invariants thus generated are sufficiently strong to prove the main property

of interest.

3.6 Decision Procedures

The verification conditions generated in deductive verification refer to the

domain of computation of the system being verified. To establish verifica-

tion conditions in the most automatic and efficient manner, STeP includes

decision procedures for a number of theories frequently used in computation

domains, and thus common in formal verification [Bj098].

The basic integration of decision procedures is a variant of Shostak's

congruence closure-based algorithm. The version in STeP admits integra-

tion with special relations such as ordering constraints, non-convex theories,

and cyclic data-structures. At the top-level, an algorithm based on congru-

ence closure propagates equality constraints through function symbols. It

invokes the other decision procedures as auxiliary simplifiers and solvers.

The theories supported in this way include:

15



• Partial orders. Beyond basic equality, partial orders are a more expres-

sive constraint language to specify relations between variables. Each

partial order constraint is represented as an edge in a graph whose

nodes are congruence closure equivalence classes.

• Linear and non-linear arithmetic. STeP provides Fourier's quanti-

fier elimination procedure to deal with formulas involving linear arith-

metic; this procedure also extracts implied equalities. Verification con-

ditions involving nonlinear arithmetic, which are common in the veri-

fication of hybrid systems, are dealt with by techniques that eliminate

first- and second-degree variables. Many verification conditions involv-

ing arithmetical symbols are restricted to linear arithmetic, where mul-

tiplication is only used with at most one non-numerical argument. For

this, STeP includes Fourier's quantifier elimination procedure, which

also extracts implied equalities.

• Bit-vectors. Reasoning about bit-vectors is essential for hardware ver-

ification. STeP includes decision procedures for fixed-size bit-vectors

with boolean bitwise operations and concatenation, and for non-fixed

size bit-vectors with concatenation [BP98].

• Lists, queues, and word decision procedures. Lists and queues are com-

mon data structures, especially in systems using abstract datatypes

or asynchronous channels. Both lists and queues can be viewed as

special cases of words, with concatenation being the basic operation.

Although the known decision procedures for word equalities have pro-

hibitive complexity, the special cases of lists and queues can be solved

efficiently.

• Recursive data-types. STeP supports equality reasoning for general

recursive datatypes, which allow the specification of S-expressions and

other tree-like structures. Enumeration types and records are treated

as special cases of recursive datatypes.

Co-inductive data-types, such as lazy lists, are also supported. Both

equality constraints and subterm relationships are supported in the

integration of decision procedures.

• Set theory. STeP provides basic support for Multi-level Syllogistic Set-

theory (MLSS). MLSS terms range over sets, and operations include

union, intersection, set-difference, and finite set-enumeration. Atomic

relations include set equality, inclusion and membership.

16



STePusesdecisionproceduresnot only to checkvalidity,but to simplify

formulas as well, rewriting them to smaller, logically equivalent ones. Effi-

cient formula simplification can make verification conditions more readable

and manageable, and improves the efficiency of subsequent validity checking.

Validity Checking: The above decision procedures check validity of 9round

formulas, where no first-order quantification is present. STeP extends this

combination of ground decision procedures to include theory-specific unifi-

cation algorithms, which find quantifier instantiations needed for first-order

validity checking [BSU97].

The STeP validity checker is an extension of the Davis-Putnam-Loveland-

Logemann propositional satisfiability checker. It operates on formulas in

nonclausal form, and is extended to consider quantifiers. The procedure is

intended to preserve the original structure of the formula, including struc-

ture sharing using let- expressions, as much as possible. Case splitting,

instantiation, skolemization and simplification can all be performed incre-

mentally, in a uniform setting. The procedure takes advantage of instantia-

tions suggested by decision procedures whenever available, but can also use

"black-box" procedures that only provide yes/no answers.

Interactive Theorem Proving: An interactive Gentzen-style theorem

prover is available as part of the Proof Editor to establish verification con-

ditions that are not proved automatically. This prover features induction

over well-founded domains, and Gentzen rules for temporal reasoning. It is

complete for (uninterpreted) first-order logic: if the formula is valid, a proof
for it can be found.

The Gentzen prover builds a proof tree. Each node of the tree is as-

sociated with a subgoal, where the root is the fornmla to be proved. At

each step, a rule is applied, which reduces the validity of the current node

to the validity of its children. At the leaves, the validity of the subgoal is

established using the automatic decision procedures and validity checking

procedures.

User guidance comes in three main forms: the choice of rule to apply,

the use of cut formulas, which are arbitrary user-provided formulas used to

perform case analysis, and the duplication and instantiation of quantified
formulas.

3.7 Modular Verification

Different components of a large system may require the application of differ-

ent verification methodologies, depending on their specific type (real-time
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or discrete,finite- or infinite-state). Usingthe notionof modularvalidity,
modularpropertiescanbeestablishedby the samesetof methodsasglobal
properties,accountingfor environmenttransitions.Automaticpropertyin-
heritancethenensuresthat suchpropertiescanbeusedaslemma_in proofs
overcompositemodules.In the caseof recursivelydefinedsystems,proper-
tiescanbeestablishedby structural induction.

Manypropertiesarenot directly guaranteedby a module,but holdonly
undercertainassumptions.STeP'sproofmanagementallowsassumptions
to beusedbeforetheir proofisavailable,checkingtheresultingdependency
diagramto avoidunsoundcircularreasoning.Assumptionsaboutthe envi-
ronmentcanbe madewhenprovinga modularproperty,and subsequently
dischargedwhenthe moduleis composedwith another.The searchfor ap-
propriateassumptionscanbeguidedby constructingverificationdiagrams
for eachmoduleand attemptingto provethe associatedverificationcondi-
tions [FMS98,MCF+98].

4 Applications

4.1 Real-time Systems

In [BMSU97], we present a modular framework for proving temporal prop-

erties of real-time systems, based on clocked transition systems and linear-

time temporal logic. We show how deductive verification rules, verification

diagrams, and automatic invariant generation can be used to establish prop-

erties of real-time systems in this framework. We also discuss global and

modular proofs of the branching-time property of non-Zenoness. As an

example, we present the mechanical verification of the generalized railroad

crossing case study using STEP.

4.2 Fault-tolerant Systems

In [BLM97], a parameterized fault-tolerant leader-election algorithm re-

cently proposed is modeled and verified using STEP. Our methods settle the

general N-process correctness for the algorithm, which had been previously

verified only for N = 3. We formulate the notion of Uniform Compassion

to model progress in faulty systems more faithfully, and combine it with the
more standard notions of fairness. We also show how the correctness proofs

generalize to different channel models by a reduction to a simple channel
model.
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4.3 Hybrid Systems

In [MS98] we present invariant generation methods for hybrid systems, and

verify a simple hybrid water level controller using STEP. In [MCF+98], we

show how deductive verification tools, and the combination of finite-state

model checking and abstraction, allow the verification of infinite-state sys-

tems featuring data types commonly used in software specifications, includ-

ing real-time and hybrid systems. We verify properties of the hybrid indus-
trial steam boiler example, which is modelled as the combination of discrete

and hybrid modules.

4.4 Educational Use

STeP has been used on several occasions for teaching a graduate-level in-

troductory course on temporal verification of reactive systems, at Stanford

University and at the Technion (Israel Institute of Technology, Haifa).

STeP is freely available for research and educational use. The STeP

manual is available as [BBC+95], and system descriptions are provided in

[BBC+96, MBB+98]. For information on obtaining STEP, see the STeP web

pages at:

http://www-step.stanford.edu/

19



5 Graduated Ph.D. Students

(Partially supported by this contract.)

1. Arjun Kapur (1997). Thesis: Interval and Point-based Approaches to

Hybrid System Verification.

2. Luca de Alfaro (1997). Thesis: Formal Verification of Probabilistic

Systems.

3. Nikolaj Bjorner (1998). Thesis: Integrating Decision Procedures for

Temporal Verification.

4. Tom£s E. Uribe (1998). Thesis: Abstraction-Based Deductive-Algorithmic

Verification of Reactive Systems.

5. Henny B. Sipma (1999). Thesis: Diagram-based Verification of Dis-

crete, Real-time and Hybrid Systems.

2O



References

[BBC+95]

[BBC+96]

[BBM97]

[Bj098]

Nikolaj S. Bj0rner, Anca Browne, Eddie S. Chang, Michael

Col6n, Arjun Kapur, Zohar Manna, Henny B. Sipma, and
Tom_ E. Uribe. STEP: The Stanford Temporal Prover, User's

Manual. Technical Report STAN-CS-TR-95-1562, Computer

Science Department, Stanford University, November 1995.

Nikolaj S. Bj0rner, Anca Browne, Eddie S. Chang, Michael

Col6n, Arjun Kapur, Zohar Manna, Henny B. Sipma, and

Tom£s E. Uribe. STEP: Deductive-algorithmic verification of re-

active and real-time systems. In Rajeev Alur and Thomas A.

Henzinger, editors, Proc. 8th Intl. Conference on Computer

Aided Verification, volume 1102 of LNCS, pages 415-418.

Springer-Verlag, July 1996.

Nikolaj S. Bj0rner, Anca Browne, and Zohar Manna. Automatic

generation of invariants and intermediate assertions. Theoret-

ical Computer Science, 173(1):49-87, February 1997. Prelimi-

nary version appeared in I st Intl. Conf. on Principles and Prac-

tice of Constraint Programming, vol. 976 of LNCS, pp. 589 623,

Springer-Verlag, 1995.

Nikolaj S. Bj0rner. Integrating Decision Procedures for Tem-

poral Verification. PhD thesis, Computer Science Department,

Stanford University, November 1998.

[BLM97] Nikolaj S. Bj0rner, Uri Lerner, and Zohar Manna. Deductive ver-

ification of parameterized fault-tolerant systems: A case study.

In Intl. Conf. on Temporal Logic. Kluwer, 1997. To appear.

[BMS95] Anca Browne, Zohar Manna, and Henny B. Sipma. General-

ized temporal verification diagrams. In 15th Conference on the

Foundations of Software Technology and Theoretical Computer

Science, volume 1026 of LNCS, pages 484 498. Springer-Verlag,

1995.

[BMSU97] Nikolaj S. Bj0rner, Zohar Manna, Henny B. Sipma, and

Tom£s E. Uribe. Deductive verification of real-time systems us-

ing STEP. In 4th Intl. AMAST Workshop on Real-Time Systems,

volume 1231 of LNCS, pages 22-43. Springer-Verlag, May 1997.

21



[BMSU98]

[BP98]

[BSU97]

[cu98]

[FMS98]

[MBB+98]

[MBSU98]

Nikolaj S. Bjcrner, Zohar Manna, Henny B. Sipma, and
TomAs E. Uribe. Deductive verification of real-time systems us-

ing STEP. Technical Report STAN-CS-TR-98-1616, Computer

Science Department, Stanford University, January 1998. To ap-

pear in Theoretical Computer Science. Preliminary version ap-

peared in _th Intl. AMAST Workshop on Real-Time Systems,

vol. 1231 of LNCS, pages 22-43. Springer-Verlag, May 1997.

Nikolaj S. Bj0rner and Mark C. Pichora. Deciding fixed and non-

fixed size bit-vectors. In _th Intl. Conf. on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), volume

1384 of LNCS, pages 376 392. Springer-Verlag, 1998.

Nikolaj S. Bj0rner, Mark E. Stickel, and TomAs E. Uribe. A

practical integration of first-order reasoning and decision proce-

dures. In Proc. of the 14 th Intl. Conference on Automated De-

duction, volume 1249 of LNCS, pages 101-115. Springer-Verlag,

July 1997.

Michael A. ColSn and Tom£s E. Uribe. Generating finite-state

abstractions of reactive systems using decision procedures. In
Alan J. Hu and Moshe Y. Vardi, editors, Proc. 10 th Intl. Con-

ference on Computer Aided Verification, volume 1427 of LNCS,

pages 293 304. Springer-Verlag, July 1998.

Bernd Finkbeiner, Zohar Manna, and Henny B. Sipma. Deduc-

tive verification of modular systems. In Willem-Paul de Roever,

Hans Langmaack, and Amir Pnueli, editors, Compositionality:

The Significant Difference, COMPOS'97, volume 1536 of LNCS,

pages 239-275. Springer-Verlag, December 1998.

Zohar Manna, Nikolaj S. Bj0rner, Anca Browne, Michael

Coldn, Bernd Finkbeiner, Mark Pichora, Henny B. Sipma, and

TomAs E. Uribe. An update on STEP: Deductive-algorithmic

verification of reactive systems. In Tool Support for System Spec-

ification, Development and Verification, pages 87-91. Christian-

Albrechts-Universitat, Kiel, June 1998. Full version to appear in

LNCS.

Zohar Manna, Anca Browne, Henny B. Sipma, and Tom£s E.

Uribe. Visual abstractions for temporal verification. In Armando

22



[MCF+98]

IMP94]

[MP95]

IMP96]

[MS98]

[Sip98]

[SUM99]

[Uri98]

Haeberer, editor, AMAST'98, volume 1548 of LNCS, pages 28

41. Springer-Verlag, December 1998.

Zohar Manna, Michael A. ColSn, Bernd Finkbeiner, Henny B.

Sipma, and TomKs E. Uribe. Abstraction and modular verifi-

cation of infinite-state reactive systems. In Manfred Broy, edi-

tot, Requirements Targeting Software and Systems Engineering

(RTSE), LNCS. Springer-Verlag, 1998. To appear.

Zohar Manna and Amir Pnueli. Temporal verification diagrams.

In M. Hagiya and John C. Mitchell, editors, Proc. International

Symposium on Theoretical Aspects o/ Computer Software, vol-

ume 789 of LNCS, pages 726-765. Springer-Verlag, 1994.

Zohar Manila and Amir Pnueli. Temporal Verification o/Reac-

tive Systems: Safety. Springer-Verlag, New York, 1995.

Zohar Manna and Amir Pnueli. Clocked transition systems.

Technical Report STAN-CS-TR-96-1566, Computer Science De-

partment, Stanford University, April 1996.

Zohar Manna and Henny B. Sipma. Deductive verification of

hybrid systems using STEP. In T.A. Henzinger and S. Sa.stry,

editors, Hybrid Systems: Computation and Control, volume 1386

of LNCS, pages 305 318. Springer-Verlag, April 1998.

Henny B. Sipma. Diagram-based Verification o/Discrete, Real-

time and Hybrid Systems. PhD thesis, Computer Science De-

partment, Stanford University, December 1998.

Henny B. Sipma, Tom_ E. Uribe, and Zohar Manna. Deductive

model checking. To appear in Formal Methods in System Design,

1999. Preliminary version appeared in Proc. 8 th Intl. Conference

on Computer Aided Verification, vol. 1102 of LNCS, Springer-

Verlag, pp. 208 219, 1996.

Tom_.s E. Uribe. Abstraction-based Deductive-Algorithmic Ver-

ification o/Reactive Systems. PhD thesis, Computer Science

Department, Stanford University, December 1998.

23


